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Abstract
Binge drinking is characterized by bouts of high-intensity alcohol intake and is associated with an array of health-related harms.
Even though the transition from occasional impulsive to addictive alcohol use is not well understood, neurobiological models of
addiction suggest that repeated cycles of intoxication and withdrawal contribute to the development of addiction in part through
dysregulation of neurofunctional networks. Research on the neural sequelae associated with binge drinking is scant but resting
state functional connectivity (RSFC) studies of alcohol use disorders (AUD) indicate that the development and maintenance of
long-term excessive drinking may be mediated by network-level disruptions. The present study examined RSFC in young adult
binge (BD) and light (LD) drinkers with seeds representing the networks subserving reward (the nucleus accumbens and caudate
nucleus), salience (anterior cingulate cortex, ACC), and executive control (inferior frontal cortex, IFC). BDs exhibited enhanced
connectivity between the striatal reward areas and the orbitofrontal cortex and the ACC, which is consistent with AUD studies
and may be indicative of alcohol-motivated appetitive behaviors. Conversely, BDs demonstrated lower connectivity between the
IFC and hippocampus which was associated with higher craving. This may indicate impaired ability to suppress unwanted
thoughts and a failure to employ memory of the harmful consequences of heavy drinking in prospective plans and intentions.
The observed greater connectivity of the reward/salience network and the lower prefrontal-hippocampal connectivity were
associated with hazardous drinking levels indicating that dysregulation of neurofunctional networks may underlie binge drinking
patterns.
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Introduction

Effective cognitive processing requires efficient communica-
tion among different regions in the brain. Neuroimaging tech-
niques such as resting state functional connectivity (RSFC)
provide insight into how these regions interact at the level of
dynamically coherent neurofunctional systems (Bullmore and

Sporns 2009). RSFC analysis is based on correlations of the
time series of blood-oxygen-level dependent (BOLD) activity
recorded from different brain areas while the subject is at rest.
Similarities in brain activity patterns are assumed to underlie
functional connectivity between regions comprised in differ-
ent networks (Prohovnik et al. 1980; Biswal et al. 1995;
Greicius et al. 2003). Spontaneous fluctuations in the RSFC
BOLD signal are not confounded with task-induced activity
related to attention or cognitive demands, rendering the RSFC
suitable for investigating the neural assemblies that form in-
trinsic functional networks (Smith et al. 2009). Large-scale
studies indicate that spontaneous activity is reflected in largely
replicable networks (Deco et al. 2011; Smith et al. 2009).
Furthermore, spatial connectivity maps and network coher-
ence have been associated with variability in behavior (Fox
and Raichle 2007), making it possible to examine the disrup-
tions of neural systems associated with different disorders
including addiction (Sutherland et al. 2012).
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It has been well established that repeated cycles of intoxi-
cation and withdrawal can dysregulate the neurofunctional
networks necessary for effective cognitive processing
(Volkow et al. 2004; Oscar-Berman 2012; Loeber et al.
2009a). Neurobiologically driven models of addiction suggest
the shift from impulsive to compulsive drug consumption is
mediated by enhanced saliency of drug-related rewards and a
simultaneous lowering of a top-down executive control net-
work (Baler and Volkow 2006; Goldstein and Volkow 2011;
Volkow et al. 2004; Garavan and Weierstall 2012). This ex-
tensive evidence implicates dysregulation of frontal, striatal,
and limbic circuitry that underlies progression from recrea-
tional to compulsive drug use (Everitt and Robbins 2016;
Feil et al. 2010; Haber and Knutson 2010; Koob and
Volkow 2016; Van den Oever et al. 2010).

Alcohol use disorder (AUD) is characterized by excessive
and compulsive alcohol use, craving and loss of control over
alcohol intake, and dysphoric affect when sober, contributing
to relapse (Koob 2000; Loeber et al. 2009a; Loeber et al.
2009b). Consistent with neurobiological accounts of addic-
tion, imaging studies indicate that these attributes may be me-
diated by the disruption of several functional networks includ-
ing the reward, salience, and the executive control networks
(Beck et al. 2012; Muller-Oehring et al. 2015; Kim et al. 2017;
Zhu et al. 2017; Sullivan et al. 2013; Camchong et al. 2013a;
Oscar-Berman 2012). The reward network plays a key role in
the development of addiction by mediating reinforcement of
the hedonic effects experienced in the binge/intoxication stage
(Baler and Volkow 2006; Goldstein and Volkow 2011).
Imaging studies indicate the striatum, as part of the reward
circuitry, is affected by chronic alcohol consumption
(Schulte et al. 2010; Makris et al. 2008; Muller-Oehring
et al. 2015). Alcohol elevates dopamine levels in the nucleus
accumbens (NAcc) in the ventral striatum which plays an
essential role in the rewarding effects of alcohol and the de-
velopment of addiction (Engel and Jerlhag 2014; Soderpalm
et al. 2009). Indeed, mesolimbic regions have demonstrated
enhanced activation in response to alcohol-related cues
(Grusser et al. 2004; Myrick et al. 2004; Wrase et al. 2007),
while RSFC studies indicate dysregulated communication be-
tween regions within the reward network (Muller-Oehring
et al. 2015; J. Wang et al. 2016; Fein et al. 2017). Tightly
coupled with rewarding behavior is the motivation for com-
pleting and reengaging in such behaviors which is mediated
by the salience attributed to appetitive cues. The process of
detection and evaluation of salient stimuli is dependent on a
number of brain regions including the insula, orbitofrontal
cortex (OFC), anterior cingulate cortex (ACC), amygdala,
and thalamus (Menon and Uddin 2010), which have been
shown to be dysfunctional in AUD (Schoenbaum et al.
2006; Ivanov et al. 2012; Tremblay and Schultz 1999;
Harsay et al. 2012; Taylor et al. 2009). Individuals with
AUD have displayed greater OFC and ACC activation in

response to alcohol-related cues which was associated with
higher alcohol craving and relapse (Grusser et al. 2004;
Myrick et al. 2004; Tapert et al. 2004; Oberlin et al. 2016).

Decreased executive control has been heavily implicated in
the development and maintenance of AUD (Brion et al. 2017;
Le Berre et al. 2017; Muller-Oehring and Schulte 2014; Naim-
Feil et al. 2014; Oscar-Berman et al. 2014; Oscar-Berman and
Marinkovic 2007) as impaired executive control limits the abil-
ity to inhibit alcohol consumption (Crews and Boettiger 2009;
Field et al. 2010; Fillmore 2003; Garavan andWeierstall 2012).
Neuroimaging studies indicate that regions subserving execu-
tive control with primary contributions from lateral and medial
prefrontal cortices including the cingulate cortex, are compro-
mised in AUD (Sullivan and Pfefferbaum 2005; Wilcox et al.
2014). Recent studies have focused on changes at the level of
networks subserving executive functions and have demonstrat-
ed lower connectivity between the lateral prefrontal and medial
prefrontal cortices (Muller-Oehring et al. 2015; Kim et al. 2017)
but greater connectivity of these regions with the reward net-
work including ventral tegmental area, caudate nucleus, and
NAcc (Camchong et al. 2013a; Fein et al. 2017; Kohno et al.
2017; Zhu et al. 2017). Furthermore, studies of acute alcohol
challenge point to the medial prefrontal cortex, especially the
ACC, as being particularly sensitive to alcohol during cognitive
control tasks with implications for self-control (Kovacevic et al.
2012; Marinkovic et al. 2012; Marinkovic et al. 2013; Rosen
et al. 2016).

Patterns of alcohol consumption and alcohol-related risk be-
haviors associatedwith alcohol use disorder (AUD) derive from
a complex interplay of sociocultural, psychological, and herita-
ble dimensions whose influence varies over the lifespan
(Begleiter 1991; Brown and Tapert 2004; Finn 2002; Fromme
et al. 2004; Schuckit 2000; K.J. Sher et al. 2014). Binge drink-
ing is characterized by the intake of large quantities of alcohol,
typically five or more drinks for men and four or more drinks
for women within a 2-h time frame, bringing the blood alcohol
concentration to approximately 0.08 g/dL (NIAAA 2004) and
alternations between periods of consumption and withdrawal
(Courtney and Polich 2009; Koob 2013a; Naimi et al. 2010).
However, a substantial proportion of drinkers significantly ex-
ceed these levels of consumption, imbibing alcohol at much
higher levels (Linden-Carmichael et al. 2017; Terry-McElrath
and Patrick 2016). Prevalence rates peak in the early 20-ies
(Naimi et al. 2010; Patrick et al. 2019) and then subsequently
decline as young adults mature out of binge drinking and as-
sume adult responsibilities (Lee and Sher 2018; Patrick et al.
2019; K.J. Sher et al. 2014). However, a subset of heavy
drinkers continue drinking at similar or enhanced levels
(Witkiewitz et al. 2014). The precipitating factors surrounding
the transition from impulsive to compulsive drinking are not
well understood but longitudinal studies have reported that
binge drinking during the college years is a significant predictor
of AUD after a 10-yr period (Jennison 2004; O'Neill et al.
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2001). With binge drinking being especially prevalent among
young and emerging adults (Johnston et al. 2018), the potential
neurotoxic effects (Jacobus and Tapert 2013; Vetreno and
Crews 2015), greater risk of developing AUD, and other neg-
ative health effects (Colby et al. 2004; Hingson et al. 2017;
Wells et al. 2004) are a serious public health issue. Despite these
growing concerns, evidence on the functional connectivity in
young individuals engaging in binge drinking is exceedingly
scant. In a study comprising a large number individuals whose
drinking patterns ranged from binge drinking to severe AUD,
the connectivity of the executive network was negatively cor-
related with AUD severity (Weiland et al. 2014). It is not clear,
however, whether the connectivity patterns in binge drinkers
resemble those reported in individuals with AUD.

Here we examine the association between binge drinking
patterns and functional connectivity during wakeful rest in
young, healthy individuals. Given the extensive evidence sug-
gesting that long-term alcohol use induces alterations in the
reward, salience and executive control networks, we performed
a connectivity analysis by applying Bseed^ regions of interest in
the areas that have been implicated in the reward and top-down
regulation in previous reports on AUD (Muller-Oehring et al.
2015; Zhu et al. 2015; Camchong et al. 2013b; Jansen et al.
2015; Kohno et al. 2017; Volkow and Baler 2013). These seeds
included the striatum (NAcc and caudate nucleus) for the re-
ward network, the ACC for the salience network, and the IFC
for the executive control network. RSFC investigations may
reveal dysfunctional networks associated with binge drinking
and may provide insight into a potential transitional stage in the
development of AUD. In the absence of similar studies in binge
drinkers, we based our hypotheses on previous reports in AUD.
We expected that, in comparison to LDs, the BDs would show
greater connectivity between the caudate nucleus and the ACC
(Muller-Oehring et al. 2015) and between the NAcc and the
OFC (Zhu et al. 2015), as well as greater connectivity of the
IFC with prefrontal regions (Zhu et al. 2015), especially in the
context of the compensatory activity in the IFC that we ob-
served in BDs during cognitive challenge (Molnar et al. 2018).

Materials and methods

Participants

Participants in this study were thirty-five young, healthy
adults who were 24.5 ± 3.8 yrs. old, age range: 18–30, 19
females. They were all right-handed and reported no illicit
drug or tobacco use for at least 1 month prior to the study.
They had no history of seizures, brain injury, neurological or
neuropsychiatric disorders, no vision or hearing problems or
learning difficulties, and were medication-free at the time of
the study. During screening, they provided extensive informa-
tion about their current and recent drinking including alcohol

consumption rate, frequency, and pattern of intake and were
assigned into binge drinking (BD, N = 18) and light drinking
(LD, N = 17). A binge episode was defined as consuming at
least 6 drinks for males (5 for females) within a 2 h time span.
This criterion was based on empirical evidence indicating that
young adults are more likely to reach BAC of 0.08% or above
at this level of intake (Lange and Voas 2001). The BD group
reported at least five binge episodes in the past 6 months
whereas LDs reported no more than one binge episode in
the past 6 months (see Table 1 for details on group character-
istics). The two groups were matched on age, gender, educa-
tion, ethnicity/race, and family history of alcoholism. While
the BD group reported higher levels of drinking and scored
higher on all alcohol-related variables, no group differences
were found on dispositional variables and personality dimen-
sions except for greater impulsivity-related traits reported by
BD. They had higher scores on disinhibition and boredom as
sensation seeking (Stephenson et al. 2002), and tended to have
higher motivation measures (Coutlee et al. 2014).

Participants completed an extensive battery that probed
their alcohol use including alcohol abuse problem behaviors
(Alcohol Use Disorder Identification Test, AUDIT, (Saunders
et al. 1993)), alcohol misuse (Short Michigan Alcoholism
Screening Test, SMAST, (Selzer et al. 1975)); alcohol crav-
ings (The Penn Alcohol Craving Scale, PACS, (Flannery et al.
1999)), motivational influences on their drinking patterns
(Drinking Motive Questionnaire Revised Short Form, DMQ-
R SF, (Kuntsche and Kuntsche 2009)), the severity of alcohol
consequences (Brief Young Adult Alcohol Consequences
Questionnaire, B-YAACQ, (Kahler et al . 2005)).
Dispositional traits were assessed with respect to depressive
symptomology (Patient Health Questionnaire, PHQ-9,
(Kroenke et al. 2002)), anxiety (Generalized Anxiety
Disorder, GAD7, (Spitzer et al. 2006)), impulsivity
(Abbreviated Impulsiveness Scale, ABIS (Coutlee et al.
2014)), attention deficit and hyperactivity symptomology
(Adult ADHD Self-Report Scale, ASRS, (Kessler et al.
2005)), and risk-taking behavior (Brief Measure of
Sensation Seeking Scale, BSSS, (Stephenson et al. 2002)).
Personality traits including neuroticism, psychoticism, and
extraversion were assessed with Eysenck Personality
Questionnaire (EPQ, Eysenck reference). Intelligence was
assessed with Wechsler Abbreviated Scale of Intelligence
(Wechsler 2011)). A modified version of the Family History
Assessment Module (FHAM, Rice) was used to evaluate fam-
ily history for alcoholism (FH+). Participants, who reported at
least one first-degree and one first- or second-degree relative,
or at least 3 second-degree relatives diagnosed with AUD,
were classified as FH+. On the day of the scan all subjects
were screened for illicit substances via urinary analysis and
women were additionally tested for pregnancy and all tests
were negative. Informed consent was obtained from all indi-
viduals participants included in the study.
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Imaging data acquisition

MRI scans were acquired with a GE Discovery MR750
3 T scanner (General Electric) equipped with an Invivo
HD 8 channel high resolution head coil. A 6 min
resting-state echo-planar imaging (EPI) scan was ac-
quired for each participant with 35axial slices; slice
thickness = 4 mm; TR = 1800 ms; TE = 30 ms; flip angle

70°; matrix 64 × 64; FOV 24 cm; 200 volumes.
Participants were instructed to rest quietly with their
eyes open while focusing on a fixation point on a
screen. High resolution IR-Prepped 3 FSPGR T1-
weighted anatomical images with 166 contiguous axial
1.2 mm thick slices were also acquired (TR = 7.38 ms;
TE = 2.984 ms; flip angle 8°; matrix 256 × 192; FOV
24 cm).

Table 1 Participant
characteristics for the BD and LD
groups

BD (n = 18) LD (n = 17) Stat. Value p<

% Female 64.3% 50.0% .62 .43 a

Age 23.3 ± 3.1 25.6 ± 4.2 103 .10

Family History Positive for Alcoholism 50.0% 56.3% .12 .73 a

Education years 15.3 ± 1.8 15.8 ± 2.2 117 .48

Undergraduate GPA 3.3 ± 0.4 3.6 ± 0.3 72.5 .03

drinking days/wk 2.7 ± 1.1 1.5 ± 1 .0 63.5 .003

drinks/occasion 5.3 ± 2.5 2.3 ± 1.2 41 < .001

binge episodes in past 6 mos 14.9 ± 14.0 0.4 ± 0.7 .000 < .001

alcohol-induced blackouts in 6 mos 3.2 ± 2.7 0.2 ± 0.5 35 < .001

Max no. of drinks in 24 h/past 6 mos 12.6 ± 8.9 3.6 ± 2.0 12.5 < .001

Age Onset of alcohol use 16.2 ± 1.8 18.4 ± 2.0 58.5 .005

AUD symptom severity (SMAST) 2.4 ± 2.3 0.8 ± 1.0 76 .009

AUD Identification Test (AUDIT) 13.7 ± 5.9 4.1 ± 1.5 5.5 < .001

Drinking Motivation (DMQ-R SF)

Enhancement 2.3 ± 0.3 1.7 ± 0.4 36.5 < .001

Social 2.7 ± 0.4 2.0 ± 0.4 39 <.001

Conformity 1.5 ± 0.6 1.4 ± 0.5 129 .57

Coping 1.7 ± 0.5 1.2 ± 0.3 51.5 <.001

Drinking consequences (B-YAACQ) 9.6 ± 6.5 2.7 ± 3.1 49.5 .001

Alcohol Craving (PACS) 8.1 ± 4.9 2.8 ± 2.7 51 .001

Anxiety (GAD-7) 2.7 ± 2.6 3.0 ± 2.7 147 .84

Depression (PHQ-9) 3.4 ± 3.2 3.1 ± 3.0 144.5 .77

ADHD Symptoms (ARSS) 1.7 ± 1.6 1.0 ± 1.2 120.5 .26

Impulsivity (ABIS)

Attention 2.1 ± 0.5 1.9 ± 0.4 116.5 .22

Motor 2.2 ± 0.8 1.8 ± 0.4 1081 .13

Non-Planning 2.1 ± 0.6 1.8 ± 0.5 125 .35

Sensation Seeking (BSSS)

Experience 4.3 ± 0.8 4.0 ± 0.9 114 .27

Boredom 4.1 ± 0.8 3.6 ± 0.7 81.5 .02

Thrill 3.6 ± 1.1 3.6 ± 1.2 138 .82

Disinhibition 3.8 ± 0.7 3 ± 1.1 82 .03

Eysenck Personality Quest. (EPQ)

Neuroticism 3.7 ± 2.8 3.5 ± 3.8 126.5 .53

Psychoticism 2.5 ± 2.1 2.4 ± 1.4 141 .91

Extraversion 9.4 ± 2.6 7.9 ± 3.55 109.5 .22

WASI-II intelligence scale (percentile) 68.3 ± 21.4 76.6 ± 19.4 110 .24

Included are group characteristics (Mean ± SD or %) for BD and LD groups. a Tested with Chi-Square; all other
comparisons performed with the Mann-Whitney U test.

Significant p-values are marked in boldface font
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Resting-state functional connectivity analyses

Functional connectivity analysis was carried out using the
CONN-fMRI Functional Connectivity toolbox v17
(Whitfield-Gabrieli and Nieto-Castanon 2012). Data were
pre-processed using CONN’s default MNI pipeline which in-
cludes the typical steps used in a functional activation analy-
sis: slice-timing correction, realignment, co-registration, nor-
malization, and spatial smoothing. Additionally, white matter
and CSF masks were created and Principal Component
Analysis (PCA) was applied to the BOLD time series to esti-
mate noise within these masks. These components and motion
parameters were then regressed from the BOLD time series
across all voxels. The residual time series were band-pass
f i l tered within a frequency window of 0.008 to
0.09 Hz.(Whitfield-Gabrieli and Nieto-Castanon 2012).

To analyze the RSFC data, seed-to-voxel functional con-
nectivity maps were created for each participant. The same a
priori regions-of-interest (ROIs) were chosen as seeds of in-
terest for all subjects based on their theoretical relevance from
a set of default pre-defined areas provided by CONN-fMRI
Functional Connectivity toolbox. They comprised bilateral
regions in the reward network including the ventral striatum
(nucleus accumbens, NAcc) and the dorsal striatum (caudate
nucleus). The salience network was represented by the anteri-
or cingulate cortex (ACC), and the executive control network
was represented by the lateral inferior frontal cortices (IFC)
(Fig. 1).

The mean BOLD time series was computed across all
voxels within each ROI. The seed-to-voxel analysis computes
the correlation between these average time series and the
BOLD time series for all other voxels in the brain. Bivariate-
correlation analyses were used to determine the linear associ-
ation of the BOLD time series between each pair of sources
and a Fisher Z transformation was applied. Individual seed-to-
voxel maps were entered into a group-level analysis.

A peak voxel threshold of p ≤ 0.001 and a cluster extent
threshold of p ≤ 0.05 were set for bidirectional (i.e. positive
and negative) explorations of connectivity associations.
Results were considered significant if they survived correction
for multiple comparisons with Family-Wise Error (FWE) p ≤
0.05. Functional Connectivity values (mean z-scores) for sig-
nificant clusters were extracted using the REX toolbox
(Whitfield-Gabrieli and Nieto-Castanon 2012). There were
no significant correlations between head motion and the func-
tional connectivity indices.

A limitation of this method is that the direction of the con-
nectivity findings cannot be determined. The RSFC analysis is
based on correlations and is, therefore, not sensitive to the
direction, causality, or temporal relationships between the
BOLD time series. In order to infer directionality, connectivity
methods based on Granger causality or Dynamic Casual
Modelling will have to be explored in future studies.

Statistical analysis

SPSS 24 was used for all statistical analyses (IBM Corp.,
Armonk, NY, USA). Nonparametric (Spearman’s rho) corre-
lations were conducted to characterize the relationship be-
tween individuals’ connectivity values (i.e., seed-to-cluster)
and variables related to alcohol use and dispositional traits.
Correction for multiple correlations was achieved with a false
discovery rate approach relying on Benjamini-Hochberg pro-
cedure (Hochberg and Benjamini 1990).

Results

Participant characteristics (Table 1)

BD and LD groupswerematched on age, education, FH+, and
intelligence. As expected, the BD group reported higher levels
of drinking and had higher scores on all alcohol-related vari-
ables. There were no group differences on the measures of
anxiety, depression, attention deficit disorder, and personality
including psychoticism, neuroticism, extraversion, and social
desirability. However, BD had higher scores on measures of
sensation seeking including disinhibition and boredom. BD
also had lower undergraduate grade point average (GPA).

Fig. 1 Seed regions shown in slices along the z-axis are based on the atlas
used by CONN-fMRI Functional Connectivity toolbox
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Seed-to-voxel analysis

BD and LD groups showed different functional connectivity
patterns in three ROIs used as seeds in the seed-to-voxel anal-
ysis (Fig. 2, Table 2). In line with our expectations, the BDs
demonstrated greater functional connectivity relative to LDs
for two ROIs. More specifically, BD participants had signifi-
cantly higher connectivity between the left caudate and the left
OFC and bilateral ACC (Fig. 2a), and between the right NAcc
and the bilateral OFC (Fig. 2b). In contrast, BD participants
had lower connectivity than LD subjects between the right
IFC and the left hippocampus (Hc) (Fig. 2c). There were no
main effects of gender or group x gender interactions in any of
the analyses so the factor of gender was omitted from subse-
quent analyses.

Correlation analysis

Nonparametric Spearman’s rho correlations were computed to
examine the relationship between functional connectivity pat-
terns and alcohol-related and personality variables (Table 3).
Multiple correlations were corrected with the FDR-based
Benjamini-Hochberg procedure. Across all subjects, greater
connectivity values between the striatal seeds and the medial
prefrontal cortex, and lower connectivity between the right
IFC and the hippocampus were associated with a range of
alcohol-related variables with an emphasis on high-intensity
drinking including AUDIT scores, the number of binge epi-
sodes in the past 6 months, the maximum number of drinks
consumed in 24 h, alcohol-related harmful consequences, etc.
A subset of the representative correlations is shown in Fig. 3.
In contrast, no significant correlations were observed between
any of the connectivity values and personality, disposition, or
mood indices.

Discussion

This study examined functional connectivity during wakeful
rest in young individuals as a function of their binge drinking
patterns. Of particular interest were the reward, salience, and
executive networks which have been implicated in the devel-
opment and maintenance of AUD. Group comparisons indi-
cate that: (1) BDs showed greater connectivity of the reward
network regions (NAcc and the caudate nucleus) with the
salience network regions (ACC, OFC) which was positively
correlated with AUDIT scores and other variables sensitive to
high-intensity drinking; (2) BDs were characterized by lower
connectivity of the IFC with the hippocampus which was
negatively correlated with AUDIT and other alcohol-related
variables. These group differences in RSFC were observed in
the absence of differences in intelligence scores, personality
traits, and self-reported negative emotional states including
depression and anxiety. However, BD participants tended to
report higher disinhibition and boredom susceptibility which
has been implicated in dysregulated control over alcohol in-
take (Kuntsche et al. 2006; Leeman et al. 2012; K. J. Sher and
Trull 1994; Stautz and Cooper 2013).

Enhanced RSFC between the subcortical reward
regions and the prefrontal salience areas in BD

BDs exhibited greater connectivity between the subcortical
reward areas (NAcc and the ventral caudate nucleus) and the
OFC and ACC in the medial prefrontal cortex in line with
similar reports in AUD studies (Jansen et al. 2015; Kohno
et al. 2017; Zhu et al. 2015). Furthermore, Muller-Oehring
and colleagues (Muller-Oehring et al. 2015) observed expand-
ed connectivity of the reward network with medial prefrontal
regions and a lower within-network connectivity in AUD
group. Overal l , these resul ts are al igned with a

Fig. 2 Seed-to-voxel resting state connectivity maps (upper panel) and
the corresponding bar graphs of connectivity values (lower panel).
Compared to LD, BD participants show (a) higher connectivity
between the left caudate (seed region) and the clusters in the OFC and

ACC; (b) higher connectivity between the right NAcc (seed region) and
the clusters in the OFC; (c) lower connectivity between the right IFC
(seed region) and the clusters in the hippocampus (Hc)
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well-established role of the ventral striatum in the
mesocorticolimbic network as it subserves alcohol’s reward-
ing effects (Bjork et al. 2010; Bjork et al. 2008; Haber and
Behrens 2014; Jia et al. 2011). Pleasure-inducing, reinforcing
effects of alcohol are mediated by dopaminergic pathways
from the NAcc which is associated with drug wanting
(Robinson and Berridge 1993). Because initiation and devel-
opment of addiction depend on dysregulation of reward cir-
cuitry (Everitt and Robbins 2005; Koob and Volkow 2010),
the ventral striatum is considered a key structure in addiction
(Koob and Le Moal 2005; Pierce and Kumaresan 2006).
Results of the present study are consistent with the prevalent
accounts indicating that binge drinking reflects a gradual pro-
cess as impulsive drinking shifts towards compulsive intake
(Enoch 2006; Kimbrough et al. 2017; Koob 2013b; Koob and
Le Moal 2008). Indeed, the observed greater connectivity be-
tween the ventral striatum and the OFC correlates with daily
alcohol intake, binge episodes, and high-level drinking
(Table 3). The appetitive dimension has been confirmed in
functional imaging studies showing greater activity of the stri-
atum to alcohol-related cues in young heavy drinkers (Ihssen
et al. 2011; Vollstadt-Klein et al. 2010). Similar activation has
been observed in individuals diagnosed with AUD (Grusser
et al. 2004; Myrick et al. 2004). Furthermore, detoxified alco-
holics have shown less activation of the ventral striatum to

monetary gain but greater activation alcohol-related cues
which correlates with craving (Wrase et al. 2007).

Extensive evidence indicates that the ventral striatum is
closely coupled with the medial prefrontal cortex including
the OFC and ACC which are implicated in the salience valua-
tion and perception of reward (Haber 2011; Rolls 1996, 2004).
The mesocortico-ventral striatal circuitry is involved in learning
reward associations and in making behavioral choices
(O'Doherty et al. 2003; Schultz et al. 2000; Sesack and Grace
2010; Tobler et al. 2006; Rolls 2004). At the neuroanatomical
level, the NAcc receives dopaminergic projections from the
ventral tegmentum as well as glutamatergic projections from
the frontal cortex including the orbitofrontal area (Humphries
and Prescott 2010). Both the NAcc and dorsal striatum have
reciprocal connections with the medial prefrontal cortex (Haber
2016; Jarbo and Verstynen 2015) which is implicated in rein-
forcement learning and integrating reward, salience valuation,
and learning reward contingencies (Haber and Knutson 2010;
Jarbo and Verstynen 2015; Rolls 2004). Imaging studies have
reported greater OFC and ACC activation in response to
alcohol-related cues in AUD individuals which correlated with
higher craving and relapse (Grusser et al. 2004; Myrick et al.
2004; Tapert et al. 2004). Similarly, greater striatal activation
was associated with greater craving in heavy drinkers
(Vollstadt-Klein et al. 2010). Using a multimodal approach

Table 2 Seed regions with Functional Connectivity parameters in BD vs LD

Seed region Cluster regions Voxels In region BD conn. Mean(SD) LD conn. Mean(SD) cluster-size p-FWE corr.

L-Caudate
↕
Cluster coord
−18, 26, −26

L-OFC 137 .1 (.14) −.031 (.08) < .001
L-FP 63

MedFC 20

SubCC 13

L-PCG 3

L-Caudate
↕
Cluster coord
−06, 58,18

ACC 124 .29(.15) .06(13) < .009
L-FP 36

L-SFG 26

L-PCG 18

R-NAcc
↕
Cluster coord -12, 52, 0

OFC 113 .31 (.12) .12 (.09) < .008
L-PCG 73

R-PCG 24

L_FP 16

R_FP 33

R-IFC
↕
Cluster coord
−36, −18, −24

L-Hc 73 −.08 (.1) .13 (.1) < .05
L-TFC 72

L-PHc 18

Seed regions are listed individually in the first column along with peak-voxel coordinates of the clusters exhibiting significant connectivity with each
seed. For each seed region, constituent regions for each cluster are listed in the second column with the primary region written in boldface font. The third
column contains voxels for each regionwhile the fourth and fifth columns list the averaged connectivity values for the entire cluster for each group. FEW-
corrected cluster-level p-values are presented in the sixth column.

NAcc Nucleus accumbens, OFC Orbitofrontal ctx, FP Frontal pole,MedFCMedial frontal ctx, PCG Paracingulate gyrus, SFG Superior frontal gyrus,
SubCC Subcallosal ctx, TFC Temporal fusiform ctx, PHc Parahippocampal ctx, Hc Hippocampus
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which combined fMRI and PET imaging in heavy drinkers,
Oberlin and colleagues have shown that alcohol flavor cues
enhanced fMRI activation in the OFC and the right ventral
striatum which was associated with craving for alcohol.
Furthermore, dopamine release in the NAcc was induced by
presenting alcohol flavor cues (Oberlin et al. 2016; Oberlin
et al. 2015). Greater connectivity between the ventral striatum
and the OFC and ACC observed in the present study in binge
drinkers is in agreement with studies in AUD, indicating the
importance of the reward/salience network in appetitive behav-
ior as a result of alcohol intake. This connectivity rise is asso-
ciated with greater alcohol-seeking behaviors such as the num-
ber of binge episodes, high-intensity drinking, and AUDIT
scores. These data suggest the enhanced saliency of alcohol-
related rewards may mediate greater alcohol-seeking behavior
as drinking shifts from impulsive to compulsive. Other studies
investigating different types of addiction such as pathological
gambling (Camara et al. 2008) and substance abuse (Ma et al.
2010; Upadhyay et al. 2010; Y. Wang et al. 2013; Wilcox et al.
2011) have confirmed greater connectivity of the reward/
salience network. Even though in the present study it was the

ventral aspect of the caudate nucleus that primarily contributed
to the greater connectivity with the OFC and ACC, the dorsal
striatum is highly functionally connected with the NAcc as they
are both involved in contingency and habit learning, and reward
processing (Haber 2011; Voorn et al. 2004; Wise 2009).
Repeated bouts of heavy drinking reinforce associations with
alcohol-seeking behavioral patterns (Tomasi and Volkow
2013), with a shift towards engagement of the dorsal striatum.
Habit formation such as engaging in drinking on a regular basis,
and goal-directed actions including alcohol seeking and con-
suming, depend on the dorsal striatum (Balleine et al. 2009;
Gremel et al. 2016). Indeed, the fronto-striatal connections are
supported by the dopaminergic system (Bromberg-Martin et al.
2010) and are enhanced by alcohol (Everitt and Robbins 2016).
The present results confirm that the reward-salience networks
are altered in young individuals engaging in bouts of binge
drinking in ways that are similar to those in AUD individuals.
This observation is consistent with the importance of alcohol-
motivated appetitive behaviors in young binge drinkers and
could serve as amarker of a transitional stage in a cyclic process
leading towards compulsive intake (Koob and Le Moal 2008).

Table 3 Spearman’s rho
correlations between RSCF and
alcohol-related and personality
variables

L caud-LOFC L caud-ACC R NAcc-OFC R IFC-L HC

rho rho rho rho

Alcohol-related variables

no. drinks day/week .39 .47 .51* −.53*
no. drinks/occasion .52* .42 .58* −.34
binge episodes in 6 mos .65* .55* .75* −.68*
no. of blackouts in 6 mos .40 .37 .51* −.56*
max no. drinks in 24 h/6 mos .61* .53* .65* −.47
AUD symptoms (SMAST) .30 .07 .31 −.30
AUD Identif. Test (AUDIT) .52* .43 .70* −.64*
Drinking Consequences .3 .24 .46 −.63*
Alcohol craving (PACS) .39 .32 .51* −.51*
Drinking Motivation (DMQ-R) .33 .31 .41 −.47
Personality/mood measures

Impulsivity (ABIS) .015 −.02 .23 −.39
Sensation seeking (BSSS) .13 .19 .28 −.16
Anxiety (GAD-7) .20 .02 −.007 .001

Depression (PHQ-9) .19 .12 .17 −.21
Attn. deficit (ASRS) .25 .08 .35 −.35
Neuroticism (EPQ) .011 −.13 −.014 −.19
Psychoticism (EPQ) .014 −.13 .12 .17

Extraversion (EPQ) .15 .24 .23 −.21

SMAST Short michigan alcoholism screening test, AUDIT Alcohol use disorder identification test, B-YAACQ
Brief young adult alcohol consequences questionnaire, PACS Penn alcohol craving scale, DMQ-R Drinking
motive questionnaire revised, ABIS Abbreviated impulsiveness scale, BSSS Brief measure of sensation seeking
scale, GAD7 Generalized anxiety disorder, PHQ-9 Patient health questionnaire, ASRS Adult ADHD Self-report
scale, EPQ Eysenck personality questionnaire

Spearman’s rho coefficients are marked with * and written in boldface font if they survived FDR-based
Benjamini-Hochberg correction for multiple correlations
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Reduced prefrontal-hippocampal functional
connectivity in BD

Previous studies in AUD cohorts have reported stronger
resting connectivity within primarily frontal networks
presumed to underlie executive control (Camchong
et al. 2013a; Jansen et al. 2015; Kohno et al. 2017;
Zhu et al. 2015). In comparison to short-term abstinent
alcoholics, the resting connectivity of the executive network
was especially greater in individuals after long-term absti-
nence (Camchong et al. 2013a), lending support to a compen-
satory interpretation of these changes (Chanraud and Sullivan
2014). In that view, strengthening of the executive network
serves an adaptive purpose of enhanced recruitment of cogni-
tive control in support of maintaining abstinence (Camchong
et al. 2013b; Jansen et al. 2015; Kohno et al. 2017). However,
results are inconsistent as other studies reported lower connec-
tivity in the executive network (Kim et al. 2017; Muller-
Oehring et al. 2015; Weiland et al. 2014) which is interpreted
as lower cognitive control and gretaer likelihood of relapse. In
contrast to our expectations, binge drinking patterns in the
present study were not associated with altered connectivity

of the prefrontal seeds comprising the anterior cingulate cor-
tex, and the left and right inferior frontal cortices. Despite the
greater appetitive drive in BD, these results suggest that the
frontally-mediated cognitive control is not altered sufficiently
to promote lapsing into AUD pattern.

However, compared to light drinkers, BDs exhibited
lower connectivity between the right IFC (rIFC) and the
hippocampus. It has been well established that the rIFC
is an essential node in the cognitive control network
with key contributions to response suppression and at-
tentional control (Aron et al. 2014; Hampshire et al.
2010; Levy and Wagner 2011; Munakata et al. 2011;
Wessel et al. 2016). A recent study reported lower ac-
tivity and oscillatory synchrony in rIFC during atten-
tional control in young binge drinkers which correlated
with drinking levels (Correas et al. 2018). The hippo-
campus plays a critical role in memory encoding and
retrieval (Eichenbaum and Fortin 2005; Moscovitch
et al. 2006; Suzuki 2006) and its connections with the
prefrontal cortex underlie a range of memory processes
(Barker et al. 2017; Eichenbaum 2017). Prefrontal-
hippocampal connectivity and its role in inhibitory con-
trol over memory has been examined with functional
imaging. In a recent study, a decrease of hippocampal
activity observed on BNo Think^ trials is consistent with
memory suppression mediated by well described
prefrontal-hippocampal pathways traced in non-human
primates (Anderson et al. 2016). Greater activation of
the right frontal cortex is associated with downregula-
tion of the hippocampus during inhibition of memory
retrieval (Depue et al. 2016; Marinkovic et al. 2009).
Numerous studies have reported greater activation in
the rIFC during active memory suppression (Benoit
et al. 2015; Depue 2012; Depue et al. 2016; Levy and
Anderson 2008; Mitchell et al. 2007). The prefrontal-
hippocampal interplay is important for cognitive and
emotional functions and its dysregulation has been pro-
posed to underlie a range of psychiatric disorders
(Godsil et al. 2013) including addiction. In a study of
cocaine users, lower right prefrontal activity was asso-
ciated with the inability to suppress interference by
drug-related stimuli (Hester and Garavan 2009).
Similarly, in a task investigating the inhibition of mem-
ory retrieval, alcoholics were impaired in their ability to
suppress unwanted thoughts (Nemeth et al. 2014). In the
present study, the prefrontal-hippocampal connectivity
was lower among BDs which was associated with
higher craving scores, r = −.51, p < .002, suggesting that
BDs may be impaired in their ability to suppress intru-
sive thoughts and memories, potentially related to alco-
hol craving. These results are consistent with a mecha-
nistic account of GABA-mediated suppression of hippo-
campal activity. In a study that combined fMRI during a

Fig. 3 Scatter plots of the representative correlations between
connectivity indices and drinking variables. Blue and red colors signify
LD and BD respectively

Brain Imaging and Behavior



thought suppression task and proton magnetic resonance
spectroscopy, lower resting concentration of hippocam-
pal GABA was associated with lower suppression
(Schmitz et al. 2017). It has been well established that
heavy alcohol use results in neuroadaptive changes
reflected in down-regulated GABAA receptors (Most
et al. 2014; Roberto and Varodayan 2017). Lower hip-
pocampal GABA underlies impaired prefrontal-
hippocampal circuitry needed for thought suppression
(Schmitz et al. 2017). Therefore, the inability to sup-
press unwanted, intrusive thoughts due, in part, to
GABA downregulation may contribute to greater crav-
ings in BDs.

Recent theories also propose that the hippocampus is in-
volved in decision-making through the role of prospective
memory, which enables the imagination of future outcomes
(Johnson and Redish 2007; Kwan et al. 2012; Schacter et al.
2007). Indeed, memories are essential for planning adaptive,
goal-directed behavior which is the essence of cognitive con-
trol. Therefore, lower connectivity between the IFC and hip-
pocampus might also suggest impairments in prospective
memory or the ability to employ memory in intended plans
or actions in the context of adaptive constraints. In the current
study, lower connectivity between the IFC and hippocampus
was associated with more binge episodes, blackouts, AUDIT
scores, habitual alcohol intake levels, and greater alcohol-
related negative consequences. These data provide supporting
evidence that an impaired ability to suppress intrusive
thoughts or cravings together with a failure to employ pro-
spectivememory of the harmful consequences of heavy drink-
ing may subserve the transition to more compulsive drinking.
This is broadly consistent with a recent study of young binge
drinkers that reported lower frontolimbic connectivity which
mediated a relationship between impulsivity and rates of al-
cohol consumption (Crane et al. 2018).

In sum, we found enhanced connectivity between the re-
ward areas in the striatum and the medial prefrontal cortex in
young BDs which is consistent with similar observations in
AUD cohorts and is indicative of the importance of alcohol-
motivated appetitive behaviors. While we did not observe
alterations in the connectivity of the prefrontal seeds within
the executive network, BDs were characterized by lower
prefrontal-hippocampal connectivity which was associated
with higher craving. This may indicate impaired ability to
suppress unwanted thoughts and a failure to employ memory
of the harmful consequences of heavy drinking in prospective
plans and intentions. Overall, connectivity indices correlated
with a range of alcohol-related variables with sensitivity to
high-intensity drinking which is suggestive of the vulnerabil-
ity of neural networks to hazardous drinking levels. Even
though connectivity values did not correlate with any mea-
sures of personality or mood, this study cannot address a pos-
sibility of preexisting vulnerability. Taken together, these

results support neurobiologically based models of addiction
suggesting that, in the context of heavy drinking, dysregula-
tion of reward/salience and memory circuitry may mediate the
shift from impulsive to compulsive alcohol consumption
(Baler and Volkow 2006; Goldstein and Volkow 2011).
Thus, the characteristics observed in BDs are suggestive of
potential markers for the development of alcohol addiction
and may have clinical implications for intervening before
alcohol-seeking behavior becomes more severe.
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